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A stability problem for the equilibrium positions of autonomous Hamiltonian 
systems of ordinary differential equations with two degrees of freedom is exa- 
mined for the case when one of the frequencies of the linear system equals ze- 
ro. The stability question is resolved in a nonlinear formulation. The casesof 

simple (Kamenkov’s case) and of multiple (Liapunov’s case) elementary divi- 
sors of the matrix defining the linear system are studied. The stability or insta- 

bility of the equilibrium position , depending on the coefficients of the Hamil- 
tonian function, is proved. 

1. We consider an autonomous Hamiltonian system with two degrees of freedom . 
The coordinates 5 and $2 and the moments Xl and X2 are chosen in such a way that 
the origin of the phase space coincides with the equilibrium position of the differential 

equation system and the Hamiltonian function is written as a series 

H = H2 + . . . + H,,, + . . . (1.1) 

where H, are uniform polynomials of degree m in the coordinates and momenta If 

HZ is a sign-definite function of its variables, then the equilibrium position is stable by 
Liapunov’s theorem [l], If HZ is not a sign-definite function, but stability in the first 
approximations obtains and the frequencies 01 and 02 (0 d o1 d u& of the linear sys- 
tem are not related by resonance relations up to fourth order, inclusively, then in the ma- 

jority of cases the stability question is resolved by the Arnold-Moser theorem [Z, 3].sup- 
pose that integers n1 and n2 exist such that 0 < 1 n, 1 + 1 n, 1 ( 4 and nlwl + lzZms = 

0. Then the Arnold-Moser theorem is inapplicable and the stability problem requires a 
special investigation. Stability under resonance of third (20, = al) and fourth (30~ = 

03 orders have been investigated in [4, 51. Stability under a second-order (or = wa) 

resonance was analyzed in [6]. 
The aim of the present paper is to obtain conditions for stability and instability under 

first-order resonance,i.e. when one of the frequencies of the linear system equals zero: 

01 = 0 and wz # 0. At first we turn to the question of the normal form of the quad- 

ratic part of the Hamiltonian function (1.1). In the most general form such a normal 
form has been established by Williamson and by 4 M. Galin and is given in [7]. 

Let a linear system with Hamiltonian Hs (?r, X1, x2, XJ be given. First of allwe 
note that since or # 0s and co2 + 0, the Hamiltonian can be reduced to a real ca- 
nonic transformation to [8] 

H2 = hz + V&o, (a2 + X2’) (62 = f 1) 

20 
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where hadepends only on the variables zr and x1 and in the most general case is 

h2 = V2ax12 + bx,X, + V2 CX 12 

The equations of motion of such a system with one degree of freedom are 

f = Jhg 

The defining equation of this system det (Jh 0 aE) = 0, where E is the unit mat- 

rix, then takes the form 

oa+D= 0 (D = det (Jh) = ac - b2) 

It is obvious that if the defining equation has a zero root, D = 0 . It can be shown 

that all cases can be reduced to two when D = 0 by linear real canonic substitutions: 

(1) u = b = c = 0; (2) a # 0 and b = c = 0. In the first and the second cases 

the invariant polynomials of the defining matrix Jh - aE equal, respectively : (1) 
ii = is = O; (2) ii = U* and is = 1. Consequently, in the first case the defining 

matrix has simple elementary divisors, while in the second case, multiple ones. We note 

in addition that in the first case rank (Jh) = 0, and in the second, rank (Jh) = 1. 
Thus in the first case hz 3 0 and the final normal form of the function Hs is 

Hz = l&% (d + -w) (1.3) 

In the case of multiple elementary divisors we can always achieve a = 6, = & 1 

using canonic substitutions, i.e. we can assume that 

Hz = 1/26,x,* + 1/~~~~~ (%’ + x22) (1.4) 

The stability problem for a non-Hamiltonian system of two differential equations in 
the case of a pair of zero roots of the defining equation and multiple elementary divi- 

sors (the Liapunov case) was exhaustively considered in [9]. The author of [lo] considered 

an analogous problem, but for the case of simple divisors (the Kamenkov case). In addi- 

tion, Kamenkov considered the stability problem for systems of many differential equa- 

tions with a pair of zero roots. However, Kamenkov assumed that all the remaining roots 
of the defining equation had negative real parts. It is clear that such a situation can never 

arise in a Hamiltonian system, and, since Kamenkov’s proofs are based essentially on the 
assumption mentioned, there is a clear need for a special analysis of the case of Hamil- 

tionian systems (or the case with pure imaginary roots). Nevertheless, certain ideas from 
the proof of instability, worked out by Liapunov and Kamenkov for systems with one de- 
gree of freedom, can be used in the investigation of systems with a larger number of de- 
grees of freedom. 

2. In almost all the nonresonance and resonance stability problems, analyzed to date, 
for canonic systems with two degrees of freedom the investigation is carried out along the 

following lines (an exception is the case of multiple elementary divisors with 01 = 0s 
[6]). The Hamiltonian function is reduced to normal form (each to its own), Next, using 
the integral H = H” = COBt, where H” is a small number or zero, a reduction is ef- 
fected, i. e. the investigation is reduced to a system with one degree of freedom, but a 
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nonaUtOnOmOUs one. If the Hamiltonian function of the resulting system turns out to be 
sign-variable, the instability of the original system is proved by any means ; if sign-de- 

finite, the stability is proved. In the case when the first term in the expansion of the Ha- 

miltonian function of the system with one degree of freedom is of constant sign, the sta- 

bility question is resolved by terms of next order. Sign-variability is possible only in the 
resonance situation. Taking all these preliminary discussions into account, we can for- 
mulate the following fundamental theorem the use of which enables us to resolve the 
stability question for two-frequency systems in almost all cases. 

T he ore m 2. 1. Let the Hamiltionian function of the system with two degrees of 
freedom, as a result of reduction, be 

K = r”@ (cp) + K* (r, cp, t, Ho) (2.1) 

a > 1, K” = 0 @=+a$ (a, > 0) 

where the function @ and K* are z-periodic in cp, while,in addition, K* is 23~ -pe- 

riodic in t. In (2.1) H” is a sufficiently small value of the constant energy. Then, if 

the equation @ (q) = 0 does not have real roots when 0 & cp < 2 ,the equilibrium 

position is Liapunov-stable. If a number q* exists such that @ (cp*)= 0 but @‘(cp*),#O, 

the equilibrium position is unstable. 
Note 2.1. If for all roots (p** of the equation CD (cp) = 0 it happens that 

a,’ (cp**) = 0, the stability question is resolved by high-order terms. 
N o t e 2. 2. Theorem 2.1 is a simple generalization of Theorem 2.1 from [&I, into 

which it turns when a = 2 and T = 2n. 

At first we prove an assertion on instability using Chetaev’s theorem [ll]. We note that 

from the periodicity condition on the function CD (cp) and from the fact that @’ (9) # 

0 follows the possibility of selecting a root qh of the equation 0 (rp) = 0 such that 

CD’ (rp*) ( 0. As the Chetaev function we take 

V=rsinY, Y =&--*+a) 

where the fairly small (but finite) number a is chosen such that there are no other zeros 

of the function @ in the neighborhood cp* - a < cp < ‘p* -j- a, while @’ retains 
its sign in this neighborhood. The total derivative of the Chetaev function, taken rela- 

tive to the equations of motion with the Hamiltonian function (2. l), is 

dV 
dt = ra g a cos Y - 0’ sin Y ) 0 (rs+zl) (2.2) 

It is easy to see that the function (2.2) is always positive in the region IJ’ > 0 and, con- 
sequently, the equilibrium position is unstable, 

To prove stability we pass to the variables ” action 1 - angle w I* by the formulas 
r = dS I &p and W = i3S / aI, where the genersting function of the canonic trans- 

formation r, cp 3 I, W equals 

s(I,rp)=It;*’ E(u)= ~PwJ)l”~dm 
0 

Note that the integral ~?3 (u) always exists for 0 < u &I T and when the theorem’s 
hypotheses are satisfied. Then, in the new variables the Hamiltonian (2.1) is written as 

K (I, w> = y (I) + K* (I, w, t, H”), y (I) = [Iz / E(T)P 
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where the fairly smooth function K* has the period z in rp, the period 2n in t and an 
order not lower than cc + a, (a, > 0) relative to I. Since dy / dI $5 0 in the ring 
0 < cl < I < c2, the equilibium position being investigated is stable by virtue of Mo- 
ser’s theorem on invariant curves @J . 

8. Suppose that the defining equation of the system with Hamiltonian (1, 1) has a 
pair of pure imaginary roots and that the elementary divisors are simple (Kamenkov’s 
case). We assume that the linear normalization has already been done and Ha has the 
form (1,3) ; the forms H,,, have the form (1.2). We now make a nonlinear canonic tran+ 
formation 

(a% x1, % x3 + (!!I, yr, 92, y2) (3.5) 

so as to maximally simplify the forms .@a, HP ,etc. The normalizing transformation 
(3.1) will be sought not by the classical Birkhoff method but by the new Deprit-Hori nor- 
malization methods [12, 131. Then, in the notation of the paper ( * ) the normalization 
reduces to the solving of the operator equation 

DS, = G, - F, (3*2) 

in each order m, relative t&he variables. Here S, are the expansion terms of the ge- 
nerating function of tr~formation (3.1)* F, are the expansion terms of the new nor- 
malized Hamiltonian function F, while the forms (;, are computed by simple formu- 
las in terms of the previously-found forms Hz, . . ,, H,, Sat . . ., Sm-l, Ft, . 6 ., 
F,_, (for example, 63 = Ha, Gp = & + It2 (H, j- F,; S,), where the braces 
denote the operation of computing the Poisson brackets). In (3.2) 

(39 3) 

For convenience in solving the operator Eq. (3.2) we make a linear complex canonic 
change of variables “1 = q *, X, = x1* (3.4) 

x2 = -& (x2* -I- %2x,*), xg = -+t2 zp+ + X& (3.5) 

Corresponding formulas can be written out for the variables yj,Yt, YJ* and Y,*. Then, 
allowing for the form of function Hz, written down in terms of complex variables, we 
have 

D = ioz h* ay,* ( “- Ys*&) 
This leads to the solving of algebraic equations in the coefficients of the generatingfimc- 
tion and of the new Ha~lt~ian function (these functions can also be written in complex 
variables) : 

aa (vs - l&3) &J&$t = - i (&lVll4 - &+#a) 

Hence we see that if y2 # pz, the corresponding terms in the new Ha~lto~~ function 
can be annulled. Returning to real variables, we obtain the normal form of the Hamilton- 

*) Markeev, A. P, and Sokol’skii, A. G., Certaincomputational algorithms 
for the norma~zation of Ha~lto~an systems. Preprint from the Institute of Applied 
Mathematics, Akad.Nauk SSSR, I’@ 31, 1976. 
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ian function 

Here h$,k are polynomials of M - in yr Yl, while 
brackets denote operation of the integer of a It is that 

the has been out up such an M relative the variables 

at least coefficient of polynomial h($ nonzero. 
Theorem 1. Suppose a canonic with two of freedom 

one zero and simple divisors and its Hamiltonian has 

been to form Then,if h$$ a sign-definite of the 

9, and the equilibrium is Liapunov-stable. hg is sign-variable func- 

the equilibrium is unstable. 
o te 1. If is a function, the question is by 

higher-order 
N o e 3. The last in Theorem is proved under the 

assumption that the roots the equation = 0 is a one. The 

remains valid this assumption. 

3.1. The position is if M an odd 

To prove theorem we to the coordinates ri rpi by formulas 

7Jj v/2rj sin v/2rj COS qj (3.8) 

The Hamiltonian function (3.7) then becomes 
M [m/z] 

F = bv2 - b40,r~’ 2@ (cpl) + J$ 2 <D,, k (e) r~‘2-kr2k + F (nl+ri (3.9) 

m-=3 k=l 

where the function - &os@ (cpr) is obtained from hg if instead of yr and Y1 we 
substitute the quantities l/z sin ‘pi and I/? con ‘pr , respectively. The functions &,k 
are obtained similarly. By J’( M+r) we have denoted terms whose orders relative to I/rr 
are higher than M and which are &r-periodic in vr and (pa. 

Using the integral F = H” = const we reduce the system’s order by two units and 

we reduce the investigation of the autonomous system with two degrees of freedom to the 

investigation of asystem with one degree of freedom, but a nonautonomous one. The new 

Hamiltonian K = r2 is a &r-perrodic function of the new independent variable ‘p2.The 

motion is being analyzed in a fairly small neighborhood of the origin ; therefore,we can 

take rl - E and r2 - a, where 0 < a < 1. In addition, let the initial conditions 

be such that H” .- .@+rPa_ Then, by solving Eq. (3.9) relative to r2 and denoting the 

Hamiltonian of the resulting system by K, we arrive at (2.1) where a = M / 2, al = 
= qr and r = r,. Finally, noting that the conditions of sign-definite- 

lks ,“, &??arEbihty of functron _ . ** h 3 are equivalent to the corresponding conditions 

of the absence or presence of the roots of the equation Q (q) = 0, which appear in the 

fundamental Theorem 2.1, we obtain right away both the assertions of Theorem 3.1. 

4, Let us consider the case of multiple elementary divisors (Liapunov’s cm). The 

quadratic part of the Hamiltonian function (1.1) has the form (1.4). By the same me- 
thod as in the case of simple elementary divisors we carry out a nonlinear normalization. 
Instead of change (3.4) we make the change x1 = v-- i&xl* and X1 = v x1X,*. 
Then the quadratic part of the Hamiltonian function becomes 
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Hz* = -112ix1*2 + &x2*X2* 

Substituting this expression into the operator Eq. (3.2), we arrive at the problem of sol- 
ving the system of algebraic equations 

(I.Q + 1) C-r, P~+~. Yt, b + “2 (Vs - Pz) G-w~ = - i (g&6 - &,wJ 

Examining these equations, it is easy to see that in the new Hamiltonian function we can- 

not annul only the terms for which Vr = 0 and Va = w2. This leads to a normal form 

of the Hamiltonian, written in real variables 

F= -+ bYI2 + + 6202 (y22 + Y22) + g y U,,h, ,Yp x 
tn=3 k=O 

(~2~ + Y2”lk + Fw+l + . . . 

(4.1) 

where am_2k,lr are real coefficients. The normalization must be carried out up to an 
order j+f such that u~,s # 0. The coefficients of the normal form are expressed rather 

simply in terms of the coefficients of the original Hamiltonian function (1.1). For ex- 

ample 
a3,o = h 0300 (4.2) 

u4,o = ho4oo - + Glhf2oo + + bh,loohosoo - -& bho,loho2ol 

The ore m 4. 1. Suppose that a canonic system with two degrees of freedom has 

one zero frequency and multiple elementary divisors and that its Hamiltonian function 

has been reduced to form (4.1). Then 

1) if M is odd, the equilibrium position is unstable ; 
2) if M is even and 6 a , M.~ < 0, the equilibrium position is unstable ; 
3) if .M is even and 6 i a ~~~ > 0, the equilibriun position is Liapunov-stable ,. 

To prove the theorem we introduce the polar coordinates r, and q2 by formulas (3.8) 
and, as in Sect. 3, we lower the system’s order by using the integral F = H” = const, 
having taken 9s as the new independent variable. For the new Hamiltonian function K 
we obtain the expression 

K=L L + 61y12 + aM, 0~1" + KcM) + K’~+“] 
i5202 

(4.3) 
_ 

KcM) = j3’;j; a;_,~, ,Y~““$” 

KcM+l) (yl, Yl, (p2, H”) = 0 ((~1~ + YI~)(~+~)‘~) 

(4.4) 

&I (4.4) the r&d quantitks a%_2k,k are obtained by simple formulas from the quantities 

ai,j (i, j = 1, . . ., d- 
Let us prove the first assertion in Theorem 4.1 using the Liapunov’s instability theo- 

rem [l]. As the Liapunov function we take the sign-variable function 

The derivative of function V taken relative to the equations of motion with the Hamil- 
tonian function (4.3) is 

Nldcp, = MUM,, Q./i” + YI”“) + v* (4.5) 

where V* denotes either terms of higher order in yr and Yr or terms of the form 

yrm YIk, where 3 < m + k < M - 1, but m # 0. In a fairly small neighborhood 
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of the 
P-ry 

origin the function (4.5) is sign-definite. This is obvious if we change y, -P 
and Y, -+ PY, where 6 is a fairly small number. Then all the terms from 

V* are terms of higher order in 6 and the sign of function (4.5) coincides with the sign 
of &M,o. Thqthe first assertion of Theorem 4.1 is proved. 

To prove the theorem’s last two assertions we make the canonic change of variables 

y1 =. Y’~rM~W2) sn 4p, yl = M+2 r2W+2) & cp 

262 
where Cp and r are the new coordinate and momentum, while Sn cp and CS q are 
Liapunov functions [9] defined by the formulas 

dCstp - 
dq, 

-Ssurp, ~=Cs”-l~, CsO==1, SnO=O (4.6) 

CsMMq, + V&f sns cp = 1 

Notethat when M = 4 wehave Cscp=cnrpand Sn~=s~~d~~,where 
cn zp, sn ‘p and dn cp are elliptic functions with modulus 1 / vz The functions 
Sn cp and Cs Q, are periodic with a common period expressed in terms of the gamma- 
function as follows: 

~~=z~~r(~~/(~~ 

The Hamiltonian function (4.3), written in the variables T and 9, has the form (2. I), 
where 

cc = 2M I (M + Z), CGr = 1 I (M + Z), z = TM (4.7) 

@(q) = & Pn2 cp + A csw cp], A = 61UM,, s 
( > 

I” (4.8) 

Comparing expression (4.6) with the expression within brackets in (4.8) we see that the 
function CD (cp) has no zeros when 8ra~,~ > 0 l For Q~ft,i,~ < 0 we obtain @(cp*)= 
0, where 

Snap” = - &S2[-(1-$$)/A]-“‘, Csrp* =[I-y)-l’M 

Now making use of the fundamental theorem in Sect. 2, we at once obtain the last two 
assertions of Theorem 4. L 

6, To illustrate the applicability of the results described above in mechanical prob- 
lems, we consider the stability question for the Lagrange solutions of the planar circular 
restricted three-body problem with a zero mass ratio C14]. The first few terms in the ex- 
pansion of the Ha~~t~ian function in a neig~orho~ of a Lagrange SOlutiOn are 

1 
H, = 5 qle - kqlqa - qd+a - ; qx2 + qzpl + (5.9 

where P is the ratio of the mass of the smallest of the main bodies involved to the sum 
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of their masses. When p > u* s 0.0385... the Lagrange solutions [14] are unstable 
since the defining equation has roots with positive real part. The stability question for 

the Lagrange solutions for 0 < p 4 p+, which requires a nonlinear analysis,has been 
considered in [15 - 171. For p = 0 the answer to the stability question follows from 

simple physical considerations. As a matter of fact, when p = 0 the problem reduces 
to an investigation of the stability of the motion of a material point around a fixed at- 

tracting center, such a motion is Liapunov-unstable : its period depends upon the initial 
conditions. However,it is of interest to obtain this same result from a purely formalcon- 

sideration of a Hamiltonian system with two degrees of freedom along the lines of the 

results in [15 - 171. 

When p = 0 the frequencies of the motion in a neighborhood of a Lagrange solution 

have the form: @= 0 and (B~ = 1, while the elementary divisors of the defending mat- 

rix of the linear system are multiple. The canonic transformation 

Q=% 

Ql 

Qa 

Q = 

Pl 

PZ 

, N= 

(5.4) 

reduces the quadratic part (5.1) of the Hamiltonian function to the form (1.4), while 
13~ = --1 and 6, = 1. The forms Es and IS, are written in form (1.2) wherein the co- 

efficients h,,P,,zb are simply expressed in terms of the coefficients of forms (5.2) and 

(5.3) and of the coefficients of transformation (5.4). By the nonlinear normalization 

method described in Sect, 4 the Hamiltonian function is brought to form (4.1). where 

(see (4.2) and (4.3)) 
03.0 = 0, ho = &‘3 -41/S) 

Since &a,,, < 0, according to the second assertion of Theorem 4.1 we get that the 
Lagrange solutions are unstable when u = 0. 

In conclusion the author thanks A, P. Markeev for posing the problem and discussing 

the results obtained, 
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